查看原文
其他

稀疏核机(下)—稀疏性

stephenDC 大数据与人工智能 2022-09-09

点击上方“大数据与人工智能”,“星标或置顶公众号”

第一时间获取好内容


作者丨stephenDC

这是作者的第8篇文章


本文是“稀疏核机”这个专题的第三篇,也是最后一篇。


《稀疏核机(上)—SVM回顾》中,我们简单回顾了SVM的导出;在《稀疏核机(中)—核方法》中,我们从SVM的基函数扩展,引出了核方法。至此,准备工作已经完成,我们在本篇重点讨论核机的稀疏性。


主要内容包括:


  • 稀疏核机的正式概念

  •  SVM作为一种典型的稀疏核机,其稀疏性从何而来?

  • SVM是最稀疏的核机吗?

  • 是否有办法获得比SVM更稀疏的核机?



稀疏核机






SVM的稀疏性



我们可以从最大化Margin、Hinge损失函数、对偶问题的约束项,这3个不同的角度来理解SVM的稀疏性。

 

 Part 1 

最大化Margin


先来回顾一下,对二分类问题,Margin的意义如下图所示。表示两类样本距离分隔超平面最小距离的2倍。



对线性可分的二分类问题,有无数个超平面可以将两个类别分开,而SVM定义为最大化Margin所确定的超平面。那么,最大化Margin的意义是什么呢?


a.   使结构风险最小化:样本点距分隔超平面的距离,代表了一种分类的确信度,最大化Margin显然增加了最可能被误分类的样本的分类确信度。


b.  让分隔超平面唯一化:虽然有无数个超平面可以将两类样本分开,但同时要让Margin最大,这个超平面就唯一确定了

 

问题来了,这个唯一的分隔超平面跟哪些样本点有关呢?从直觉上我们很容易发现,最大化Margin的超平面至少跟离超平面很远的那些点是没有关系的。

 

这当然只是一种直觉式的不严谨的理解,我们下面用Hinge损失函数来说明,这种直觉是对的。

 

 Part 2 

Hinge损失函数


 

 Part 3 

对偶问题的约束项


 

例子:




相关向量机



与SVM相比,RVM的第一目标是稀疏性,因此我们不管Margin最大化的问题,完全换一种思路。这种思路大概分3个步骤:


a.  定义核机的模型

b.  给每个样本点定义一个参数,表示该样本跟最终预测模型的相关性

c.   在模型学习的过程中,将这些相关性参数跟其他模型参数一起学习出来

 



RVM模型



 


相关性参数



 

参数求解



 


小结



时至今日《稀疏核机》终于写完了,原本只是想写一篇文章的,却不想题目太大了,用三篇写完还是有些虎头蛇尾的感觉。


另外就是作者水平有限,如有幸被大神看到,还请多拍砖挑刺。最后,如果写作的这些东西,能对个别同学有些许帮助,就善莫大焉了。


-end-

 


相关内容阅读


1.在线抽奖活动中如何实现中奖概率的自适应调整  

2.罗素的理发师和奥卡姆剃刀

3.机器学习中的维度灾难

4.集成学习之如何由弱变强

5.极大似然估计、极大后验估计和贝叶斯估计

6. 稀疏核机(上)—SVM回顾

7. 稀疏核机(中)-核方法

 

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存